Hace 25 años, habría sido difícil predecir a qué se iban a dedicar J. Stewart Burns, Al Jean y Ken Keeler, los tres matemáticos por Harvard (EE UU); y David X. Cohen y Jeff Westbrook, ambos físicos por la misma universidad. Los cinco son guionistas de Los Simpson, una sátira del modo de vida estadounidense nacida en 1989 que se ha convertido en una de las series televisivas más exitosas de la historia. “La cantidad de cuestiones matemáticas que aparecen en Los Simpson tiende a infinito”, explica Marta Martín, de la Facultad de Matemáticas de la Universidad de Oviedo. Ella y otros colegas, como Abel Martín, profesor de Matemáticas en un instituto de Oviedo, imparten talleres sobre Los Simpson a niños y adolescentes de centros de enseñanza en Asturias. “Salen encantados”, resume Marta Martín, que colabora con la Real Sociedad Matemática Española en la divulgación de esta ciencia. Estos son algunos de los momentos matemáticos protagonizados por los personajes amarillos.
En un capítulo, Marge Simpson decide llevar a su familia al Museo de Ciencia. Allí, Bart y Lisa Simpson contemplan un tablero de Galton, un dispositivo formado por un tablero vertical perforado con clavos, como la cama de un faquir, por el que caen pelotas. El aparato, concebido por el inventor británico Francis Galton a finales del siglo XIX, genera una serie de sucesos aleatorios: cada bola tiene la mitad de probabilidades de caer a un lado o al otro de cada clavo. Al soltar una pelota, es imposible saber dónde caerá. Sin embargo, al dejar caer muchas bolas, se puede predecir con precisión dónde terminará la mayoría: forman una curva de campana.
El tablero de Galton preside la Sala de la Probabilidad del Museo de Ciencia, en la que un vídeo del matemático francés Blaise Pascal, del siglo XVII, instruye a los Simpson: «Ah, hola. Soy Blaise Pascal, el inventor de la teoría de la probabilidad. ¿Cuáles eran las probabilidades de conoceros aquí? Excelentes, diría yo”, comenta tras tirar una moneda al aire. “Mi amiga la Ardilla Tonta está a punto de comprar un billete de lotería. Ardilla Tonta, ¿conoces la probabilidad de ganar la lotería? Bueno, es más probable que te atropelle un coche. O que te alcance un rayo. O que te asesine un conocido. Si has comprendido la probabilidad, nunca jugarás a la lotería».
En 1637, el matemático francés Pierre de Fermat garabateó en el margen de uno de sus libros uno de los teoremas más famosos de la historia. Decía que la igualdad xn + yn = zn es imposible si n es un número entero mayor que 2 y las tres letras son números enteros positivos. “He encontrado una demostración realmente admirable, pero el margen del libro es muy pequeño para ponerla”, presumía. Así que el llamado Último Teorema de Fermat estuvo más de 350 años sin demostrarse, hasta que el matemático británico Andrew Wiles anunció en 1995 la resolución del acertijo que había derrotado a sus mejores colegas durante siglos.
Ese mismo año, Homer Simpson aparecía en un capítulo deambulando por otra dimensión, rodeado por la expresión 178212 + 184112 = 192212, “un contraejemplo que echaba por tierra el Teorema de Fermat”, en palabras de Marta Martín. Aparentemente, si se hacía la suma en una calculadora normal, Homer tumbaba a Fermat, pero no. “¿Dónde estaba el truco? En que la calculadora redondea, produciendo una engañosa apariencia de igualdad”, explica Martín.
Con una calculadora más potente, el resultado es este:
178212 + 184112 = 2541210258614589176288669958142428526657
192212 = 2541210259314801410819278649643651567616
A partir de la décima cifra, el número cambia. Fermat gana a Homer.
En el capítulo Homer al cubo, el padre de la familia intenta huir de sus cuñadas Patty y Selma y detrás de un armario salta a una tercera dimensión. Allí se encuentra con un mensaje codificado: 46 72 69 6E 6B 20 72 75 6C 65 73 21. Los profesores Marta Martín y Abel Martín, con la ayuda de su colega Ángel Aguirre, han descifrado esta secuencia de números y letras. Se trata de una notación hexadecimal, un sistema vinculado a la informática que utiliza como base el número 16. El mensaje emplea los numerales del 0 al 9 y las letras de la A a la F. La A equivale al decimal 10; la B, al 11; y así sucesivamente hasta la F. Cada pareja de números representa un caracter en ASCII, un código para el intercambio de información también habitual en los sistemas informáticos.
Con estos datos, el mensaje oculto se puede traducir como: Frink rules!, “Frink manda”, en castellano. El profesor Frink es el científico de Springfield y sus alocados inventos aparecen de manera recurrente en la serie. “Si colocamos Frink rules! en un buscador de internet, esta expresión nos manda directamente a una página web que nos va a describir quién es el profesor Frink, sus andanzas, inventos y apariciones en los diferentes capítulos de Los Simpson”, descubre Martín.
Otro de los guiños matemáticos de Los Simpson aparece en un capítulo de la temporada 17, emitida en 2006. Homer debe adivinar la cantidad de asistentes a un partido de béisbol. Le dan tres opciones: 8191, 8128 y 8208. “Todos estos números son notables desde algún punto de vista”, recordaba Claudio Horacio Sánchez, profesor de Física de la Universidad de Flores (Argentina), en un artículo en la revista matemática Números. 8191 es igual a 213 – 1 y, por lo tanto, es uno de los llamados primos de Mersenne. Estos números son primos (solo se pueden dividir por 1 y por sí mismos) y además responden a la forma 2n – 1. Solo se conocen 48 primos de Mersenne. El más alto es 257885161 − 1 y se descubrió en 2013.
Otro de los números que ve Homer es el 8128, el cuarto de los llamados números perfectos, iguales a la suma de sus divisores. 8128 = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064. Los tres primeros números perfectos son el 6, el 28 y el 496, detalla Sánchez.
Finalmente, 8208 es uno de los números narcisistas, aquellos iguales a la suma de cada uno de sus dígitos elevados a n, siendo n la cantidad de cifras del número. Por ejemplo, 153 es un número narcisista de tercer orden, ya que 13 + 53 + 33 = 1 + 125 +27 = 153. El 8208 es un número narcisista de cuarto orden y es una rareza. Apenas se conocen tres números de este tipo.
En el episodio Última salida a Springfield, de 1993, Homer es elegido presidente del sindicato de la central nuclear de Springfield. El señor Burns, propietario de la planta atómica, le invita a su mansión para ganárselo. En el caserón, Homer ve una habitación con mil monos aporreando mil máquinas de escribir. Burns le explica que los animales escribirán la mejor novela de la historia.
El argumento hace referencia a un problema manejado desde hace un siglo en el cálculo de probabilidades. Claudio Horacio Sánchez recuerda uno de sus enunciados más conocidos: si un millón de monos teclearan al azar en un millón de máquinas de escribir, al cabo de un millón de años habrían escrito todas las obras de Shakespeare. “Este problema fue realmente llevado a la práctica en julio de 2003, con un programa que simulaba la acción de los monos. Más de un año después, el programa produjo un pequeño fragmento, de veinticuatro letras, de Enrique IV”, escribía en su artículo en la revista Números.
En un capítulo de la temporada 14, Edna Krabappel, profesora de la escuela de Springfield, es candidata al título de Maestra del Año. El ganador es un tal Julio Estudiante, “un profesor de matemáticas que enseñó a jóvenes pandilleros que las ecuaciones diferenciales son más poderosas que las balas”.
El personaje homenajea a Jaime Escalante (1930-2010), un profesor boliviano de Física y Matemáticas que emigró a EEUU en 1964. Su país de acogida no reconoció sus títulos y tuvo que empezar de cero, limpiando un restaurante mientras estudiaba inglés. Al cabo de los años, Escalante volvió a dar clase en una escuela de un barrio pobre de Los Ángeles y, en un entorno de violencia y drogas, consiguió que muchos de sus alumnos se entusiasmaran por las matemáticas. En 1988, el entonces presidente de EEUU, Ronald Reagan, le entregó la Medalla Presidencial a la Excelencia en Educación.
En la temporada 10 aparece uno de los momentos científicos más conocidos de Los Simpson. Homer escribe con una tiza en una pizarra una ecuación que predice aproximadamente la masa del bosón de Higgs, una partícula elemental buscada desde 1964 que otorgaría la masa al resto de las partículas que componen el átomo. El capítulo se emitió en 1998, casi 15 años antes de que los físicos detectaran por primera vez la partícula en el Gran Colisionador de Hadrones (LHC), un anillo subterráneo de 27 kilómetros de circunferencia construido en la frontera entre Francia y Suiza.
“El orden de magnitud para la masa del Higgs es correcta, pero solo el orden de magnitud”, matiza Alberto Casas, investigador del Instituto de Física Teórica, en Madrid. “La fórmula de Homer da 309 GeV (los GeV son las unidades que usamos los físicos para medir masas elementales). El valor real de la masa del bosón de Higgs es 125 GeV, así que Homer se pasó un poco”, explica.
“Es un poco más grande que el bosón de Higgs aislado por los físicos del CERN, pero tiene el mérito de que se hizo 14 años antes. No le demos más vueltas ni busquemos el rigor matemático. Se trata de un guiño que, en manos de Homer, resulta paradójico e impensable”, resalta Martín. En la misma pizarra, añade, aparece otro contraejemplo del Último Teorema de Fermat (398712 + 436512 = 447212) y “la demostración de cómo se puede transformar una rosquilla en una esfera, topología pura”.
Un niño de 9 años, sobrino del matemático estadounidense Edward Kasner, bautizó gúgol (googol en inglés) a un número extraordinariamente grande imaginado por su tío: 10100, un 1 seguido de 100 ceros. En Springfield, el pueblo de los Simpson, los cines se llaman Googolplex.
“Si tenemos en cuenta que plex es sala en inglés, podría ser que esa fuera la razón por la que los cines de Springfield llevan por nombre Googolplex. Pero no, en la serie se da un paso más, Googolplex es el número más grande con nombre conocido hasta esa fecha (10 elevado a googol o 10googol)”, detalla Martín.
“Nos imaginamos que los guionistas estarán pensando en diseñar unas nuevas salas en Shelbyville, pueblo vecino y rival de Springfield, que se llamen Googolduplex, con 10 elevado a googolplex salas (10googolplex) el nuevo número con nombre más grande”.
Para muchos matemáticos, la Capilla Sixtina de su disciplina es la identidad de Euler. Formulada como eiπ + 1 = 0, aparece en varios capítulos de Los Simpson. En palabras de Martín, relaciona “cinco imprescindibles números, como símbolo de lo que la inteligencia humana es capaz de descubrir”. El número e, cuyo valor aproximado es 2,71828 seguido de infinitos dígitos, es el número más importante del análisis matemático. Aparece en lugares inesperados, como las ecuaciones para datar restos arqueológicos con carbono 14.
El número pi (3,141592653…) es el rey de la geometría. No solo sirve para calcular el perímetro de una circunferencia: el geólogo Hans-Henrik Stølum, de la Universidad de Cambridge (Reino Unido), descubrió en 1996 que la relación entre el doble de la longitud total de un río y la distancia en línea recta entre su nacimiento y su desembocadura es de aproximadamente 3,14. El número i (raíz cuadrada de -1) es el más relevante del álgebra. “Y 0 y 1 son las bases de la aritmética por ser los elementos neutros, respectivamente de la adición y la multiplicación”, remacha Martín.
La frase matemática más conocida de Los Simpson es una invención de la responsable de la traducción para la versión española, María José Aguirre de Cárcer. En el idioma original, Bart dice “eat my shorts”, literalmente “cómete mis calzones”, pero con el sentido de “desaparece”. Multiplicar algo por cero es, precisamente, hacerlo desaparecer. En Sudamérica, subraya Martín, no reconocen esta expresión de Bart.
Pendientes del teléfono móvil se subieron al avión las chicas de Xavi Llorens, con la atención puesta en el partido que enfrentaba al Atlético de Madrid y al Valencia que les podía dar el título. El empate en el campo del equipo colchonero (1-1) confirmó el título de Liga para las azulgrana, que conquistaron su cuarto campeonato seguido sin bajarse del avión. El vuelo que les llevaba a Oviedo, donde este domingo juegan en el campo del Oviedo Moderno (12.00), sirvió de escenario improvisado para la celebración. Alexia Putellas, delantera blaugrana, fotografió el momento con todas sus compañeras y el cuerpo técnico apiñados en los primeros asientos del avión.
Las azulgrana encadenan cuatro campeonatos consecutivos e igualan al Athletic Club de Bilbao y al Levante como equipos con más títulos de la Primera División Femenina (4).
El Barça sólo ha cedido un empate y tres derrotas, con un balance de 88 goles a favor y 9 en contra
El Barça se convierte en el primer equipo que gana cuatro títulos consecutivos, superando al Athletic y al Rayo Vallecano. Las vascas ganaron tres títulos entre 2003 y 2005, mientras que las madrileñas habían sido las más regulares durante los años 2009 y 2011.
Con un partido menos, y cuando aún quedan dos jornadas por disputarse, las chicas de Xavi Llorens son campeonas tras completar una campaña espectacular. Las azulgrana sólo han cedido un empate y tres derrotas en todo el campeonato, con un balance de 88 goles a favor y sólo 9 en contra. En el aspecto goleador, las azulgrana cuentan con un seguro de vida: Sonia Bermúdez. La vallecana suma un total de 20 tantos en 25 encuentros, uno cada 92 minutos. Le siguen Marta Corredera, con 11, Ana Romero, con 10 y Jenni Hermoso, con 9.
Al femenino azulgrana tan solo le falta extender su hegemonía en Europa, donde no pueden competir contra gigantes como el Wolfsburgo alemán, cuya sección está profesionalizada. La sección anhela dar un salto de calidad para poder ser competitiva también en la Champions. Para ello necesitaría un refuerzo económico que evite la fuga de talentos. Se trata de una sección semiprofesional y la mayoría de las jugadoras hacen compatible el fútbol con los estudios.
El equipo blaugrana cuenta con varias jugadoras internacionales. En el último partido de España, contra Irlanda, el seleccionador contó con Melanie Serrano, Marta Torrejón, Ruth García, Leire Landa, Virginia Torrecilla, Marta Corredera, Jenni Hermoso y Sonia Bermúdez. La selección española competirá en el Mundial de Canadá, entre el 5 de junio y el 6 de julio.