Presentada la galaxia más lejana descubierta hasta ahora

Una galaxia “extraordinariamente luminosa”, según la califican los científicos, y situada a más de 13.000 millones de años luz de distancia, ha sido descubierta por un equipo de investigadores de EE UU, Gran Bretaña y Holanda que ha logrado medirla y caracterizarla con exactitud. Se denomina EGS-zs8-1 y es la galaxia más lejana que se ha medido jamás, afirman los astrónomos, que han utilizado en este trabajo uno de los dos grandes telescopios Keck, de espejo de 10 metros de diámetro, situados en Mauna Kea (Hawai). Cuando la galaxia emitió la luz que ahora se capta en los observatorios terrestres, habían transcurrido solo unos 670 millones de años desde el Big Bang inicial (la edad actual del cosmos es de 13.800 millones de años, según los datos del telescopio espacial europeo Planck), señala Pascal Oesch, de la Universidad de Yale, líder del estudio. Con aproximadamente el cinco por ciento de su edad actual, “el universo era todavía muy joven”, añade. Pero “ya esa galaxia había acumulado una masa equivalente a más del 15% de la de la Vía Láctea hoy”. Y se estaban allí formando estrellas a un ritmo unas 80 veces superior al de nuestra galaxia actualmente.

NASA, ESA, P. Oesch and I. Momcheva (Yale University), and the 3D-HST and HUDF09/XDF Teams’);»> ampliar foto

Fotografía de la galaxia EGS-zs8-1, las más lejana que se ha medido hasta ahora. / NASA, ESA, P. Oesch and I. Momcheva (Yale University), and the 3D-HST and HUDF09/XDF Teams

«El récord anterior de distancia de una galaxia correspondía a 697 millones de años después del Big Bang, así que el nuevo récord significa sólo unos 30 millones de años más joven», explica Oesch a EL PAíS por correo electrónico. «Pero ha sido muy difícil, nos ha llevado un año y medio romper el récord anterior y, por ahora, solo conocemos un puñado de galaxias que estén a más 13.000 millones de años luz. Además, nuestro galaxia es más brillante y casi diez veces más masiva que la del récord anterior», recalca.

La galaxia de récord fue identificada inicialmente con los telescopios espaciales Hubble y Spitzer (de infrarrojo). Pero Oesch y sus colegas han logrado medirla con precisión gracias a un instrumento astronómico (el Mosfire, o Espectrógrafo Multiobjeto de Exploración en infrarrojo) del telescopio Keck I. «Nos permite estudiar varias galaxias al mismo tiempo, por lo que es mucho más eficaz que los instrumentos anteriores, con los que teníamos que estudiarlas de una en una», continúa Oesch. «Con el Mosfire podemos, por lo tanto, hacer observaciones mucho más profundas para un número mayor de galaxias en el mismo tiempo de observación, lo que nos permite detectar características más débiles que antes».

En cuanto a cómo de primitivas esperan los científicos que pueden llegar a ser las galaxias, cuándo empezarían a formarse en la historia del cosmos, el científico de la Universidad de Yale responde: «Esto se está investigando y es una cuestión en la que se trabaja muy activamente; sin embargo, los modelos teóricos predicen que las primeras galaxias en el universo se formarían alrededor de 200 o 300 millones de años tras el Big Bang». Lo que está claro, recuerda, es que las estrellas se formaron antes que las galaxias, que son colecciones de muchas estrellas unidas por las fuerzas gravitacionales. «Las primeras estrellas, de nuevo según los modelos teóricos, se formarían alrededor de 100 o 200 millones de años tras el Big Bang».

La medición de las galaxias a estas distancias extremas y la caracterización de sus propiedades es un gran objetivo de la astronomía para la próxima década, señala el observatorio Keck. Estas observaciones de EGS-zs8-1 corresponden a una época en que el universo estaba sufriendo cambios importantes: el hidrógeno intergaláctico pasaba de neutro a estar ionizado. “Parece que las estrellas jóvenes de las galaxias tempranas como EGS-zs8-1 fueron el motor principal de esa transición llamada reionización”, explica Rychard Bouwens, de la Universidad de Leiden (Holanda), coautor del trabajo.

Los investigadores recalcan que, por ahora, solo se han podido medir con precisión las distancias para un puñado de galaxias

“Uno de los descubrimientos más descollantes del Hubble y el Spitzer en los últimos años es el inesperado número de estas galaxias muy brillantes en una época próxima a cuando se formaron las primeras. Todavía no comprendemos del todo qué son y qué relación tienen con las muy abundantes galaxias débiles”, señala Garth Illingworth, profesor de astronomía de la Universidad de California en Santa Cruz en un comunicado de esta institución.

Como solo se han medido con precisión las distancias a unas pocas galaxias del universo primitivo, “cada confirmación añade otra pieza al rompecabezas de cómo las primeras generaciones de galaxias se formaron en el universo temprano”, añade, Pieter Van Dokkum (Universidad de Yale). “Solo los mayores telescopios son suficientemente potentes para llegar a esas distancias”.

Las observaciones de los objetos del universo primitivo realizadas con los observatorios Keck, Hubble y Spitzer, plantean nuevas preguntas, apuntan los científicos. Por un lado se confirma que existieron grandes galaxias en el cosmos temprano, pero sus propiedades físicas eran muy diferentes de las que actualmente se observan alrededor de la nuestra. “Los astrónomos ahora tienen una evidencia sólida de que los colores peculiares de las galaxias primitivas que se aprecian en las imágenes del Spitzer se deben a un rápido proceso formación de estrellas masivas jóvenes que interactúan con el gas primordial de esas galaxias”, señalan los expertos del Observatorio Keck.

En realidad, lo que los científicos determinan al hablar de distancia es un parámetro denominado corrimiento al rojo (z), que indica el desplazamiento de la luz emitida por la galaxia hacia mayores longitudes de onda del espectro electromagnético debido a que se está alejando en el universo en expansión. Así, cuanto más distante en el cosmos es el objeto celeste, mayor es su corrimiento al rojo, o z. Oesch y sus colegas han determinado para EGS-zs8-1 un valor de z de 7.73 (unos 670 millones de años después del big Bang), mientras que el récord anterior estaba en z = 7.50, es decir, unos 697 millones de años, señala Oesch, . Los investigadores presentan hoy oficialmente su investigación en la revista Astrophysical Journal Letters, y la habían adelantado en la web Arxiv.org.

Varios centenares de galaxias candidatas a distancias extremas han sido identificadas “gracias a la excepcional sensibilidad en el infrarrojo cercano de la cámara WFC3 del telescopio Hubble”, señalan los investigadores en su artículo. Pero “actualmente solo para un puñado de galaxias normales se han medido con certeza a z superior a 7”, añaden.

El Instituto Científico del Telescopio Espacial, en Baltimore (EE UU), que se encarga del Hubble y del futuro James Webb (JWST), que está en construcción, recalca que cuando este último se lance al espacio, en 2018, se abrirán enormes posibilidades de realizar emocionantes descubrimientos. “Además de desplazar la frontera cosmológica hacia tiempos aún más tempranos, el JWST será capaz de diseccionar la luz de la galaxia EGS-zs8-1 y proporcionará a los astrónomos muchos más detalles de sus propiedades.

España y México compiten por el mayor cazador de rayos gamma

Los eventos más violentos del universo, como las explosiones de supernova o los agujeros negros atiborrándose de materia, dejan un rastro inconfundible, pero invisible. Se trata de potentes destellos de rayos gamma, el tipo de radiación más energético que existe. Un solo estallido de rayos gamma puede liberar en unos segundos más energía que el Sol durante 10.000 millones de años. Pero la humanidad ha estado ciega a estos fenómenos hasta hace tan solo unas décadas por falta de instrumentos para captarlos. En los últimos años, gracias a los telescopios espaciales y terrestres, se ha conseguido explorar en torno a un 10% del universo en este espectro. El resto es tan desconocido como América para los europeos de 1400.

ampliar foto

La futura Red de Telescopios Cherenkov (CTA) será el observatorio de rayos gamma más grande del mundo y permitirá cartografiar gran parte de ese territorio desconocido. Se trata de una gran instalación internacional que comprenderá dos localizaciones, una en el hemisferio norte y otra en el sur, para poder cubrir todo el cielo. Hace unos días, los 13 países que financian el proyecto anunciaron que van a comenzar negociaciones con España y México para decidir cuál de los dos albergará el observatorio norte.

El CTA costará unos 200 millones de euros y se pretende completarlo en torno a 2020. Será 10 veces más potente que los telescopios Cherenkov actuales y entre sus principales objetivos está desvelar el origen de los rayos cósmicos y explorar la materia oscura. Posiblemente, creen los científicos, la interacción entre la materia convencional y la oscura produzca un rastro de rayos gamma particular que podría ser captado por los 120 telescopios de diferentes tamaños que se repartirán entre los dos observatorios. En conjunto, unos 1.500 científicos e ingenieros de 29 países participan en el proyecto.

“Conseguir albergar una instalación como esta no tendría precedentes en España”, resume Manel Martínez, físico del Instituto de Física de Altas Energías (IFAE) de Barcelona y coordinador de CTA-España. El lugar propuesto es el Observatorio del Roque de los Muchachos, donde ya hay telescopios de primera línea internacional como el Gran Telescopio de Canarias. El Gobierno central, el canario y el Instituto de Astrofísica de Canarias (IAC) llevan meses puliendo su candidatura, que creen superior a la de México. En parte se debe a que el país pretende contribuir con 40 millones de euros del total de 70 millones que costará el observatorio norte. La mayoría del dinero provendría de fondos de desarrollo regional de la Unión Europea.

México desbanca a EEUU

Por su parte, México ya ha desbancado al tercer competidor del norte, EEUU. El país propone situar los telescopios en el Observatorio Astronómico Nacional de San Pedro Mártir, en Baja California. “San Pedro está entre los cuatro mejores lugares del mundo para hacer astronomía, junto a Chile, Hawai y La Palma”, asegura Gagik Tovmasian, responsable de la candidatura del país norteamericano. Este astrofísico de la Universidad Nacional Autónoma de México (UNAM) dice que en su país hay un renovado interés por desarrollar grandes proyectos científicos con colaboración internacional, como el HAWC, otro observatorio de rayos gamma fruto de la colaboración con EEUU que comenzó a funcionar el mes pasado en el estado de Puebla. El país tiene poco dinero contante y sonante que ofrecer, dice Tovmasian, pero ya está haciendo una importante inversión en infraestructuras en el lugar donde se emplazaría el CTA y además la UNAM asumiría “la mayor parte de los costes de operación”, asegura.

Un estallido de rayos gamma puede liberar más energía en unos segundos que el Sol en 10.000 millones de años

España ya ha puesto “una pica en flandes”, opina Martínez. Se refiere a la construcción del primer prototipo de telescopio grande del proyecto, el LST, que se instalará en el Roque a finales de año. Cuando hay un estallido de rayos gamma, los satélites que observan este tipo de radiación en el espacio mandan una alerta a los observatorios terrestres. Estos tienen que reaccionar en cuestión de segundos para apuntar a la porción de cielo donde se ha producido el estallido y no perder la información excepcional que transportan sobre agujeros negros, supernovas, estrellas de neutrones y otros objetos. “El nuevo telescopio será capaz de reorientarse en menos de 20 segundos y todo estará completamente automatizado, porque para reaccionar tan rápido no puedes fiarte de ningún humano”, explica el físico Juan Cortina, del IFAE. Tanto él como Martínez resaltan que en la última reunión de marzo, la mayoría de los países miembros dejaron clara su preferencia por España. “Somos bastante optimistas”, resume Cortina. La decisión final sobre el emplazamiento se tomará antes de diciembre.

Ciencia en Español