La impresión 4D salva a tres niños con un implante que crece con ellos

Kaiba, Garret e Ian apenas juntaban dos años entre los tres cuando una impresora les salvó la vida. Los pequeños nacieron con una rara y grave anomalía en las vías respiratorias. Para sacarlos adelante, tuvieron que abrirles la tráquea y meterles un tubo por el que podían respirar gracias a un ventilador mecánico. Sus pocos meses de vida los pasaban en una unidad de cuidados intensivos (UCI). Tres años después, los niños ya están en casa. Todo gracias a una férula impresa que creció con ellos hasta que sus diminutos bronquios fueron lo bastante fuertes como para que el implante se disolviera por si solo.

Con una impresora 3D se puede imprimir casi de todo, desde coches hasta una miniatura de la torre Eiffel. Con un programa de diseño por ordenador, la fabricación por capas ofrece la posibilidad de personalizar casi cualquier cosa, un aspecto que la hace muy interesante para la medicina. Ya se imprimen huesos, prótesis dentales, cartílagos… Pero, con los niños hay problema: crecen muy deprisa. Para ellos se necesitan objetos que, una vez impresos, puedan cambiar con el tiempo y adaptarse a su crecimiento. Es la cuarta dimensión o impresión 4D.

Es difícil transmitir lo enfermos que estaban estos niños», dice el cirujano que les implantó la férula impresa

Con este enfoque, un grupo de expertos estadounidenses liderados por el profesor de otorrinolaringología pediátrica de la Universidad de Michigan (EE UU), Glenn Green, ha estado ensayando implantes con biomateriales hechos con una impresora 3D. Eligieron un poliéster que tiene la particularidad de que se degrada con el paso del tiempo hasta que el organismo lo absorbe y acaba expulsando. Los investigadores lo probaron con ratas y cerdos, pero ellos creían que la impresión 4D podría servir para mucho más. Podría salvar la vida a niños.

Green y sus colegas consiguieron que la FDA, la agencia federal de EE UU que regula y vigila medicamentos y dispositivos médicos, autorizara una excepción a la norma para poder ensayar sus ideas con un grupo de niños. Los pequeños habían nacido con traqueobroncomalacia, una anomalía en los bronquios que se los cierra cada vez que respiran. De los 30 que localizaron por todo el país, seleccionaron a tres cuya vida corría mayor peligro.

«Es difícil transmitir lo enfermos que estaban estos niños. Los tres habían estado en la UCI durante meses. En ese tiempo, necesitaban de una fuerte sedación, narcóticos y paralizantes», recuerda Green. A los tres les hicieron una traqueostomía en el cuello para colocarles un tubo para respirar con ventiladores artificiales. «Aún así sufrían continuos episodios que requerían maniobras de resucitación», añade el doctor Green que, al igual que sus compañeros de aventura, ha invertido buena parte de su dinero en comprobar la eficacia de la impresión 4D para tratar a niños enfermos.

Universidad de Michigan’);»> ampliar foto

Con solo tres meses, a Kaiba le implantaron una férula impresa para sostener sus bronquios. Ya con tres años, no necesita respiración asistida y pronto le quitarán el tubo de su garganta. / Universidad de Michigan

El pequeño Kaiba tenía solo tres meses cuando le hicieron el implante. Como los otros dos, no salía de la UCI desde que nació y tenía un sinfín de problemas asociados a su enfermedad, desde alteración de la ratio de oxígeno inhalado dióxido de carbono exhalado hasta inflamación pulmonar o alteración de su metabolismo. Por lo que fuera, las paredes internas de sus bronquios colapsaban cuando espiraba, cerrando los conductos.

Lo que hicieron los investigadores fue escanear su tráquea para tener una imagen en tres dimensiones del problema. Con esa información pudieron diseñar la férula con las dimensiones necesarias para su caso concreto. En sus trabajos previos con animales, los médicos habían comprobado que el poliéster utilizado, la policaprolactona, mantiene sus propiedades durante unos 16 meses. Después de ese tiempo, va reduciendo su peso molecular, los enlaces entre moléculas se van debilitando y, poco a poco, se degrada.

Esa degradación a lo largo del tiempo viene que ni pintada a los niños con traqueobroncomalacia. Afección capaz de matarlos, el riesgo va desapareciendo a medida que el pequeño crece. A partir de los tres años, los bronquios han recuperado su fuerza y son capaces de hacer su trabajo por si solos. Así que solo se trata de aguantar ese tiempo.

El problema es que, tal y como explican en la revista Science Translational Medicine, no hay datos sobre el ritmo de crecimiento de los bronquios en los niños de tan corta edad. Por eso necesitaban un material que creciera con ellos. Y es otra propiedad de la férula que imprimieron. Agarrada a las paredes exteriores de cada bronquio con sutura, el material siguió la llamada ley cuadrático-cúbica, adaptando su forma y ampliando su volumen a medida que las vías respiratorias se iban agrandando.

Morrison et al., Science Translational Medicine’);»> ampliar foto

Las férulas a implantar en los tres niños se diseñaron digitalmente antes de imprimirlas. / Morrison et al., Science Translational Medicine

A las tres semanas del implante, Kaiba se libró del ventilador mecánico y pudo volver a casa. Durante una serie de revisiones, los médicos fueron comprobando cómo el poliéster primero crecía con los bronquios para, después, ir desapareciendo. Hoy, con tres años y medio, Kaiba no sufre de traqueobroncomalacia y la férula hace tiempo que se fue por el retrete.

Un diseño rápido y personalizado

«El proceso de fabricación de la férula muestra el poder de la combinación entre un diseño digital específico para cada paciente y la impresión 3D, la capacidad para crear dispositivos personalizados o, incluso, desarrollar objetos completamente nuevos para una necesidad concreta», comenta el profesor de ingeniería biomédica de la Universidad de Michigan y responsable de la creación del implante, el doctor Scott Hollister.

Además, el diseño digital y la impresión 4D de biomateriales es cuestión de días, como demuestra el caso de Garret, que apenas tenía 16 meses cuando le hicieron el implante. En su caso, tenía afectados los dos bronquios, por lo que necesitó dos férulas. «Las dos tenían que ser colocadas en un pequeño espacio donde la tráquea y los bronquios se unen. Para este paciente, nos reunimos un miércoles, modificamos el programa y creamos el diseño el jueves e imprimimos las férulas el viernes para implantarlas la siguiente semana. Del desarrollo de un nuevo dispositivo hasta tener una férula implantable nos llevó tres días», explica Hollister.

El poliéster usado en el implante se degrada al ritmo en que se desarrollan los bronquios

Con Kaiba habiendo cumplido su sueño de ver en persona a Mickey Mouse, con Garret, el caso más complicado, que solo tiene que conectarse al ventilador cuando se va a cama, o incluso con el pequeño Ian, que acaba de cumplir un año desde el implante, los investigadores creen que su historia puede ser solo el principio de algo más grande.

«El potencial de la impresión 3D de material médico para mejorar la personalización y los resultados para el paciente es evidente, pero su implementación en la práctica médica se enfrenta a grandes barreras», escriben los autores en las conclusiones de su trabajo. Una es la regulación existente, que aún tiene que adaptarse a esta nueva tecnología. Pero hay otro factor y no es otro que «la falta de interés económico de la industria», aclaran. Enfermedades tan raras como la traqueobroncomalacia, que afecta a 1 de cada 2.500 niños, no interesan demasiado a los fabricantes. Para pequeños como Kaiba, Garret e Ian, solo la impresión 3D puede ser la solución.

En esta noticia

Documento: ‘Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients’

Un rostro nuevo para Violet gracias a una impresora 3D

El cirujano sostiene una cavidad ocular de plástico blanco transparente en cada mano. Separándolas lentamente, John Meara muestra la distancia que había entre los ojos de Violet Pietrok al nacer. Luego las acerca de nuevo para enseñar su posición transcurridos 19 meses desde que la operó.

Violet, que ahora tiene casi dos años, nació con un defecto poco común conocido como fisura facial de Tessier. Según su madre, sus ojos de color castaño oscuro estaban tan separados que su visión se parecía más a la de un ave de presa que a la de una persona. Encima del ojo izquierdo se apreciaba un gran bulto. No tenía cartílago en la nariz. Los huesos que normalmente se unen para formar la cara del feto no se habían soldado adecuadamente.

Sus padres, Alicia Taylor y Matt Pietrok, acudieron a Meara, del Hospital Infantil de Boston, a miles de kilómetros de su hogar en Oregon, porque el cirujano plástico había practicado cuatro operaciones similares en los últimos tres años. Antes de intervenir a Violet, Meara quería una idea más precisa de su estructura ósea de la que podía ofrecerle una imagen en una pantalla, así que pidió a su compañero Peter Weinstock que le imprimiera un modelo tridimensional del cráneo de Violet a partir de resonancias magnéticas.

El primer modelo le ayudó a decidir cómo debía proceder y a comentar el plan de tratamiento con la familia. Otras tres impresiones en 3D cuando faltaba menos para la intervención permitieron a Meara girar la maqueta del cráneo en direcciones que le resultarían imposibles con una imagen y que no intentaría con un paciente sobre la mesa de operaciones. Luego pudo cortar y manipular la maqueta de plástico para determinar cuál era la mejor manera de acercar las cavidades oculares más de 2,5 centímetros.

Hospital Infantil de Boston.’);»> ampliar foto

John Meara, en su despacho. / Hospital Infantil de Boston.

Esas maquetas impresas en 3D están transformando la atención sanitaria, ya que brindan a los cirujanos nuevas perspectivas y oportunidades para practicar y permiten a los pacientes y a sus familias comprender mejor unos procesos complejos. Los hospitales también están imprimiendo herramientas de formación y material quirúrgico personalizado. Los médicos esperan poder imprimir algún día órganos de repuesto.

“No cabe duda de que la impresión en 3D será una medicina revolucionaria”, afirma Frank Rybicki, antiguo director del laboratorio de diagnóstico por imágenes en el Hospital de Brigham y de Mujeres, situado a unas pocas manzanas del Hospital Infantil de Boston, y ahora director de imagen médica en el Hospital de Ottawa (Canadá). “Acorta los procedimientos y mejora la precisión”, añade Rybicki, un radiólogo que utiliza la impresión en 3D en su trabajo con trasplantes faciales. “Cuando la bioimpresión se afiance, lo cambiará todo”, remacha.

Células y órganos

Por el momento, la impresora expulsa una capa de plástico líquido en lugar de tinta. Después añade una segunda capa, y luego otra, y poco a poco se forma un cráneo, una caja torácica o lo que indique el cirujano. El mismo proceso puede imprimir también estratos de células humanas. Hasta la fecha, los investigadores han impreso vasos sanguíneos, órganos sencillos y fragmentos de hueso. El año pasado le salvaron la vida a un niño de Utah utilizando una tablilla de plástico impresa en 3D, con la cual le abrieron la tráquea.

Weinstock, director del Programa de Simulación Pediátrica del Hospital Infantil de Boston, ve los modelos en 3D como parte de un programa más amplio para mejorar la labor quirúrgica. Explica que en el hospital de Boston y una docena de centros pediátricos de todo el mundo, el programa de simulación quirúrgica que desarrolló mejora la comunicación y la confianza de los equipos, y aumenta su seguridad en sí mismos antes de unas operaciones extremadamente complejas. Weinstock cree que también acorta el tiempo que los pacientes permanecen anestesiados.

Los médicos introducirán catéteres en réplicas de vasos sanguíneos, planificarán ‘bypass para aneurismas y sentirán la diferencia táctil entre los tumores y los tejidos sanos

Si el programa, en marcha desde hace casi dos años, ha evitado siquiera un error médico grave –y Weinstock está convencido de que ha evitado muchos–, está amortizado, como también lo está la impresora 3D de 400.000 dólares, que funciona de manera casi permanente en el sótano del hospital.

Las maquetas del inusual cráneo de Violet permitieron a Meara pronosticar con exactitud lo que encontraría debajo de aquel rostro que hacía que los desconocidos se detuvieran por la calle. Meara ya había recibido modelos impresos del cráneo de otros pacientes, pero tenía que esperar durante semanas o meses una sola réplica que costaba miles de dólares. La impresora de Weinstock generó cuatro copias idénticas en unos pocos días, cada una de ellas por un precio de unos 1.200 dólares y con una precisión milimétrica.

Experimentando con una maqueta que había modelado él mismo, Meara se dio cuenta de que en su posición ideal, los huesos de las cavidades oculares chocarían, lo cual limitaría la visión de Violet, así que modificó el diseño para evitar esa colisión.

“La capacidad para mover físicamente esos segmentos es enorme”, dice Meara. “De lo contrario, tienes que hacerlo por primera vez en el quirófano”. A principios de octubre, el día en que Violet debía ser intervenida, Meara consultó varias veces una maqueta en la sala de operaciones. La cirugía salió tal como se esperaba.

Cuando la bioimpresión se afiance, lo cambiará todo”

A medida que mejoren las impresoras 3D, también lo harán los resultados quirúrgicos, observa Rybicki. Pronto, los médicos introducirán catéteres en réplicas de vasos sanguíneos, planificarán bypass para aneurismas y sentirán la diferencia táctil entre los tumores y los tejidos sanos, por ejemplo.

El falso quirófano de Weinstock, situado en la tercera planta del hospital, parece, suena y huele igual que el de al lado, este de verdad, incluidos el instrumental, los ruidosos monitores y el líquido rojo que rezuma. Ha contratado a un titiritero y ex ingeniero cinematográfico para que las sesiones de práctica resulten más reales. Noah Schulz, un ingeniero mecánico que se incorporó recientemente a la plantilla del hospital después de haber trabajado en el mundo del espectáculo, aplica su experiencia teatral a la creación de impresiones tridimensionales de maniquíes quirúrgicos anatómicamente precisos.

Según Weinstock, neurocirujanos, cardiólogos y cirujanos ortopédicos, entre otros, utilizan a menudo el quirófano de simulación “para entrenarse”.

Aunque hasta el momento se han realizado pocos estudios sobre las ventajas de la impresión en 3D o las simulaciones quirúrgicas, investigadores del Departamento de Asuntos de Excombatientes han demostrado que los ejercicios en equipo realizados en quirófanos redujeron el número de muertes o lesiones en pacientes hasta en un 18%.

“Si resolvemos un problema, eliminamos un error, identificamos una amenaza de seguridad latente o salvamos una vida”, reduciremos los costes personales y económicos, afirma Weinstock, y añade que las ventajas de ensayar procedimientos rutinarios, respecto a los cuales médicos y enfermeras pueden volverse complacientes, son tan grandes como en casos inusuales como el de Violet.

Los padres de Violet, que viven cerca de Salem, en Oregon, y tienen otros cinco hijos, entre ellos Cora, la gemela de Violet, que está sana, se sintieron reconfortados por los numerosos preparativos de Meara. El día de la operación, cuando el cirujano salió a hablar con la familia, “lucía una sonrisa de oreja a oreja”, recuerda Taylor. “Anunció que todo había salido a la perfección”. Conocer cada uno de los movimientos que iba a realizar fue muy diferente “de abrir a Violet y decir: ‘¿Cómo arreglamos esto?”.

El año pasado salvaron la vida a un niño de Utah utilizando una tablilla de plástico impresa en 3D

Aun así, la recuperación de Violet ha sido difícil. La piel del cuero cabelludo no era lo bastante fuerte para aguantar los puntos. Toda la cicatriz amenazaba con abrirse, desde la parte superior de la cabeza hasta la cara, y tres meses después sigue sin cerrarse. La segunda intervención para crear unos párpados que funcionaran solo ha sido una solución parcial. Serán necesarias más operaciones para acercarle más los ojos y añadir cartílago nasal.

Pasará mucho tiempo hasta que el rostro de Violet haga que la gente se pare por la calle; algunas personas se muestran amables y curiosas, y otras prestas a proferir insultos hacia una niña con un aspecto diferente. Pero Violet no parece darse cuenta. Juega al cucú tras con desconocidos. Inclina la cabeza hacia atrás y se ríe incontrolablemente cuando su madre le hace cosquillas. “Tiene algo increíble, algo que encandila”, asegura Taylor.

Traducción de News Clips

© 2015 New York Times News Service